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Abstract
In this paper, we set up a bimodule of the algebra A on a fuzzy sphere. On
the basis of differential operators in a moving frame, we generalize the ABS
construction to the fuzzy-sphere case. By using the ABS construction, we
obtain new soliton solutions for several physical systems.

PACS numbers: 11.25.Sq, 02.40.Gh, 05.45.Yv, 11.15.Tk

1. Introduction

Non-commutative geometry is an old topic in mathematics [1]. It has recently become an
interesting subject in quantum field theory, since it was found that non-commutative field
theory appears naturally in string theory at low energy levels in a constant-NS B-field [2, 3].
The non-trivial B-field leads to non-commutativity of the coordinates of string ends on the
D-brane, which gives a non-commutative gauge field theory on the D-brane world volume.

Recently, the study of the non-perturbative dynamics of these fields has attracted much
more attention [4–21]. Harvey et al [4] set up a new method to investigate the soliton solution,
the monopole solution and the instanton solution in 3 + 1 dimensions. The Nielsen–Olesen
solution in the Abelian Higgs model was studied in [9] and [10]. All of the studies were carried
out in non-commutative Euclidean space. One natural question is that of how to generalize such
results to the non-commutative space with non-zero curvature. It is a challenging problem.
Physically, the space near the horizon in NS 5-brane is a sphere S3. The D-brane in such a
geometry can be described by a boundary WZW model on a sphere S2 [16]. Mathematically,
the fuzzy sphere S2 is the simplest space with non-trivial curvature [18]. The study of the
fuzzy sphere S2 will be useful in the investigation of quantum field theory in a general non-
commutative geometry, which is quite different from the non-commutative flat space. Partially
for this reason, many works have focused on this subject [18,22–26]. On the fuzzy sphere, one
can set up a gauge field theory [19] directly or from the matrix theory [23,24]. Hikida et al [15]
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discussed the D-brane structure and tachyon condensation. The CP(N) system on a fuzzy
sphere is described in [25].

In the present paper, we will consider a gauge field theory on a fuzzy sphere, which
includes the soliton and Nielsen–Olesen solution. The main tool is ABS construction. In the
standard ABS method, the quasi-unitary operator plays an important role. However, on the
fuzzy sphere, no such operator exists. We will generalize it and find a partial isometric operator
which plays a similar role to the quasi-unitary operator in the usual case.

On the usual commutative sphere, the spherical harmonic functions are a convenient basis.
They are functions of two ‘coordinates’ θ and φ. It is natural to use such a basis for a fuzzy
sphere. However, to our knowledge, most of the studies on fuzzy spheres have been based
on the three-dimensional ‘coordinate’ with a constraint. We hope that the correspondence of
spherical functions on fuzzy sphere will give a convenient basis and provide a clear physical
picture. The best way to set up such a correspondence is by using the coherent state technique.
In [20], using coherent states, the Moyal product of the ‘coordinates’ xi is constructed with
the help of stereographic projection. This is not convenient for our purposes. In this paper, we
use the standard method to define the coherent state [21].

2. The fuzzy sphere and the coherent state

The algebra A of functions on the fuzzy sphere is defined as an algebra generated by
‘coordinates’ xi (i = 1, 2, 3) with the relations

[xi, xj ] = iθεijkxk,
3∑
i=1

x2
i = r2 (1)

where the parameter θ stands for the non-commutativity and r the radius of the fuzzy sphere.
With an appropriate value of θ (see equation (7)), this algebra has a finite number of bases
which may be represented by the spherical harmonic functions ylm, l � N , with the Moyal
product (star product)3

Y Ii ∗ Y Jj =
∑
K,k

[
I J K

i j k

]
c
k,α
IJKY

K
k . (2)

We denote such a finite-dimensional algebra by AN . It also has another matrix form [15]

(Tj,m)m1,m2 = (−1)N/2−m1
√

2j + 1

(
N/2 j N/2
−m1 m m2

)
. (3)

The algebra AN has a convenient realization in the SU(2) Lie algebra. For an (N + 1)-
dimensional irreducible representation, the generators of SU(2) satisfy

[Li, Lj ] = iεijkLk,
3∑
i=1

L2
i = N(N + 2)

4
. (4)

The basis of H can be chosen as |N/2,m〉 with the relations

L±|N/2,m〉 =
√
(N/2 ∓m)(N/2 ±m + 1)|N/2,m〉

L3|N/2,m〉 = m|N/2,m〉, m = N/2, N/2 − 1, . . . ,−N/2 (5)

with L± = (L1 ± iL2)/
√

2.

3 This was first obtained from boundary conformal field theory in [16]. It can also be used as the definition of the
fuzzy sphere S2.
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It is well known that there is an isomorphism between AN and the SU(2) Lie algebra:

xi = λNLi. (6)

On HN , in fact, we will show Lf = [x ∗, f ] on the function f . It gives a relation between the
radius of the fuzzy sphere and the Casimir operator:

r2 = θ2N(N + 2)

4
. (7)

For algebra AN , the basis can be written in terms of the spherical functions but with non-
trivial multiplication by equation (1). We will show this explicitly by using the generalized
coherent states of SU(2):

|ω) = T (g)|v〉, |v〉 ∈ HN (8)

where T (g) is an element of the SU(2) group:

T (g) = eiαL3 eiβL2 eiγL3 . (9)

These coherent states satisfy
N + 1

8π2

∫
d)3 |ω)(ω| = 1. (10)

Here d)3 stands for the 3-volume form of the group manifold )(α, β, γ ). If we take a gauge
with α = φ, β = θ, γ = −φ and |v〉 = |N/2,−N/2〉, then this gives the standard coherent
state4

|ω(θ, φ)) =
N/2∑

µ=−N/2
D
N/2
µ,−N/2(φ, θ,−φ)|N/2, µ〉. (11)

Here

Djµ,ν(α, β, γ ) =
∑
k

(−1)k
√
(j + µ)!(j − µ)!(j + ν)!(j − ν)!

k!(j − ν − k)!(j + µ− k)!(k − µ + ν)!

× e−iαµ(cos(β/2))2j−ν+µ−2k(sin(β/2))2k−µ+νe−iνγ . (12)

For example, Dj0,m(φ, θ,−φ) = Y
j
m(θ, φ). In this Dirac gauge, the completeness condition

changes into an integral on S2:
N + 1

4π

∫
sin(θ) dθ dφ |ω(θ, φ))(ω(θ, φ)| = 1. (13)

First of all, let f be a function of (θ, φ) and define an operator f̂ by

f̂ =
∫

d)2 f (θ, φ)|ω(θ, φ))(ω(θ, φ)|. (14)

For a basic function ylm(θ, φ), 0 � l � N , the corresponding operator Ŷ lm is

Ŷ lm = N + 1

4π

∫
d)2 y

l
m(θ, φ)|ω(θ, φ))(ω(θ, φ)|. (15)

Putting this between two vectors in HN will give the matrix element of Ŷ lm:

(Ŷ lm)µ,ν = 〈N/2, µ|Ŷ lm|N/2, ν〉 = aN,l(−1)l−N/2+µ
√
N + 1

(
N/2 l N/2
ν m µ

)
(16)

with

aN,l = (−1)l
√
N + 1

(
N/2 l N/2

−N/2 0 N/2

)
. (17)

4 The explicit form was given in [21], but with no relation with the D-function.
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In the (N + 1)-dimensional Hilbert space on which the operator acts, one can define a
symbol related to the operator through

F̃ (θ, φ) = (ω(θ, φ)|f̂ |ω(θ, φ)). (18)

Since the coherent states are not orthogonal, the symbol F̃ is not equal to f . But there must
some relations between them. In [21], f and F are called the q-symbol and the p-symbol
respectively. They are related somehow to the (anti-)normal order. To explore such a relation,
we devote our attention to the symbol for a typical basis ylm:

Ỹ lm(θ, φ) = (ω(θ, φ)|
∫

d)2(θ
′, φ′) ylm(θ, φ)|ω(θ ′, φ′))(ω(θ ′, φ′)||ω(θ, φ))

=
∑
µ,ν,J

〈N/2,−µ,N/2, ν|J, ν − µ〉〈N/2, N/2, N/2,−N/2|J, 0〉

× 〈N/2, ν, l, m|N/2, µ〉aN,l 2l + 1√
4π
(−1)µ+N/2DJν−µ,0(θ, φ)

= a2
N,l Ỹ

l
m(θ, φ). (19)

With the help of this symbol, we can define the ‘star product’ (Moyal product) of two
functions (symbols) to be the symbol of two operators:

Ỹ j1
m1

∗ Ỹ j2
m2
(θ, φ) = (ω(θ, φ)|Ŷ j1

m1
Ŷ j2
m2

|ω(θ, φ))
=

∫
d)2(θ

′, φ′) (ω(θ, φ)|Ŷ j1
m1

|ω(θ ′, φ′))(ω(θ ′, φ′)|Ŷ j2
m2

|ω(θ, φ))

=
∑
µ,ν,J,m

(−1)µ+N/2aN,j1aN,j2〈N/2,m, j1,m1|N/2, µ〉

× 〈N/2, ν, j2,m2|N/2,m〉
× 〈N/2, ν,N/2,−µ|J, ν − µ〉〈N/2,−N/2, N/2, N/2|J, 0〉DJν−µ,0(θ, φ)

=
∑
J,m

〈j1,m1, j2,m2|J,m〉
√

2J + 1

{
j1 j2 J

N/2 N/2 N/2

}

× aN,j1aN,j2a
−1
N,J Ỹ

J
m(θ, φ) (20)

where {· · ·} stands for the 6j -symbol. Thus, the star product of two normalized functions
Y lm = a−1

N,l Ỹ
l
m (Weyl symbols) is given by

Y j1
m1

∗ Y j2
m2
(θ, φ) =

∑
J,m

(−1)j2−j1−m(2J + 1)

(
j1 j2 J

m1 m2 −m
)

×
{
j1 j2 J

N/2 N/2 N/2

}
Y Jm(θ, φ). (21)

This is nothing but the relation (2) that appeared in [16]. The slight difference is due to the
normalization of the 6j -symbol. This provides a realization of the algebra AN . It is clear that
the symbol (14) is same as equation (3) given in [15] up to a normalization factor. Therefore,
we have found a correspondence between function and operator realizations. The integral in
function space becomes the trace of an operator in Hilbert space, i.e.

Tr �⇒ N + 1

4π

∫
d)2. (22)

Comparing with the non-commutative plane, one can conclude that0 = 2/(N + 1). This was
obtained in [15] by taking the large-N limit. Here it is valid for all values of N .
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The action of the differential operators La , a = +,−, 3, on the symbol is given by

(LaY
l
m)(θ, φ) =

√
N(N + 1)(N + 2)

12

[
Y 1
a

∗, Y lm
]
. (23)

Using equation (21), one can check that

rhs =
∑
j

√
(2l + 1)N(N + 1)(N + 2)

12

{
1 l j

N/2 N/2 N/2

}

× [〈1, a, l, m|j, a +m〉 − 〈l, m, 1, a|j, a +m〉]Yja+m

=
{ √

(l ∓m)(l ±m + 1)Y lm±1, a = ±
mY lm, a = 3.

(24)

This is consistent with the left-hand side of equation (23). This equation is same as one
that appeared in [17] up to a factor. Notice that this extra factor on the right-hand side of
equation (23) comes from the non-commutative parameter θ2 = (N + 1)/2 and the radius.

3. The bimodule and the differential operator in the moving frame

We have now set up the correspondence of the differential operators. In principle, we are ready
to write down a quantum gauge field theory. However, these three differential operators are not
independent on the fuzzy sphere, since the constraint

∑
x2
i = 1 has two independent degrees

of freedom. Thus, the best way to proceed is to find two independent differential operators.
On the usual sphere, there are two tangent vectors (in the moving frame). These can be found
by introducing the right-acting operator for the basis. Sometimes this is not necessary for the
usual case [19]. This idea can be generalized to the fuzzy sphere [18, 19, 33]. The relations
of the Dirac operators and their spectrum are discussed in [33]. For the present situation,
the right-acting operators are very important. On a fuzzy sphere, the normal vector relates
to the spin of the frame. Thus, the differential operators along the two tangent and normal
directions constitute a right-acting SU(2) group which commute with the original left-acting
SU(2) group. The rotation on the sphere is a subgroup. The Hilbert space HN corresponding
to the left action of the algebra AN also provides an N + 1-dimensional representation of the
SU(2) group. Thus the basis of the algebra AN is a bimodule. In this section, we will introduce
right-acting differential operators.

Let Ja , a = +,−, 3, be the three right-acting operators in the moving frame acting on the
symbol Dl

m,µ(α, β, γ ) as follows:

J±Dl
m,µ(α, β, γ ) =

√
l ∓ µ)(l ± µ + 1)Dl

m,µ±1(α, β, γ )

J3Dl
m,µ(α, β, γ ) = µDl

m,µ(α, β, γ ).
(25)

Here we still write the right-acting operators to the left of the basis, but the action is different.
They act on the second subscript of the symbol Dl

m,µ instead of the first index. Using the
coherent state properties, we can show that

JaDl
m,µ = [D1

0,a
∗, Dl

m,µ

]√N(N + 1)(N + 2)

12
. (26)

The proof is very similar to the one for the left-multiplication case. In fact, this equation
provides a way of defining local coordinates x̂±:

x̂± =
√
N(N + 1)(N + 2)

12
D1

0,a; (27)
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the expression becomes

J±Dl
m,µ = [

x̂± ∗, Dl
m,µ

]
. (28)

In [25], three operatorsKa of another SU(2) group are found by using two sets of bosonic
operators. They commute with the generators La . K3 must correspond to J3 in the present
paper, describing the rotation freedom of the frame. The other two operators K± act like J±
in our notation. This has not been discussed on the basis of a bimodule. The advantage of
our method is that we interpret La and Ja as the left- and right-acting operators on the basis
of AN . The counterpart of Ja in the function space is explicitly constructed. We find that this
realization is natural and convenient.

4. ABS construction

In soliton theory, the solution-generating technique has proved a significant tool. Recently,
such an approach was applied to non-commutative geometry. In [4] the quasi-unitary operator
was introduced and various solutions were obtained for several theories. The key feature is the
quasi-unitary operator S which satisfies SS̄ = 1 − P , S̄S = 1. These properties are closely
related to fact that the Hilbert space is infinite dimensional. For the fuzzy sphere, however,
the dimension of the Hilbert space is just N + 1. The concept of a quasi-unitary operator must
be generalized if one is applying the ABS method to generate new solutions in a finite Hilbert
space.

On a fuzzy sphere, there are two independent degrees of freedom. The method used to
choose two such coordinates labelled by x̂± in the moving frame is given by equation (27).
Define two operators (partial isometry) T and T̄ by

T = 1√
x̂−x̂+

x̂−, T̄ = 1√
x̂+x̂−

x̂+, (29)

which satisfy

T T̄ = 1 − PN/2, T̄ T = 1 − P−N/2 (30)

where Pi is an operator projecting onto the ith dimension in Hilbert space. Since x̂− (x̂+) has
a kernel |N/2,−N/2〉 (|N/2, N/2〉), T (T̄ has the same kernel as x̂− (x̂+). This is ensured by
properly choosing the order in the denominators of T and T̄ . Such partial isometry operators
will play an important role in constructing the new soliton-like solutions. In [25], A similar
result is obtained. But it was given in terms of operators. At present, everything is based on
the partial isometry related to two tangent vectors. This can be considered as the function
realization. Using the same method, one can analyse the CP(n) model on a fuzzy sphere.

5. BPS solitons

Consider a complex scalar field theory on a fuzzy sphere. The action reads

S =
∫

d)2Da2D
a2 (31)

where Da2 = Ja2− i2 ∗ Aa . The equation of motion is

Da2 = 0. (32)

Since the gauge field Aa has no kinetic term, we have

Aa = −i2† ∗ Ja2. (33)

Thus the equation of motion can be written as

Da2 = Ja2− i2 ∗ (−i2† ∗ Ja2) = (1 −2 ∗2†) ∗ Ja2 = 0. (34)
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It is clear that the system has a trivial solution2 = constant and Aa = 0. Now, we try to give
other non-trivial solutions. Assume 2 = T n, n � N . Then one can check that it is a new
solution:

DaT
n = (1 − T nT̄ n) ∗ JaT n = PN,N−nJaT n = 0 (35)

where PN,N−n = PN + PN−1 + · · · + PN−n+1.
In the above discussion, we did not consider the effect on the potential. It is quite easy to

generalize to include the potential. Suppose the potential to be of the form V (2†2 − |20|2)
which has an extremum at 2 = 0 and a local minimum at 2 = 20. Due to the appearance
of the potential, the equation of motion should be modified. That is, the right-hand side of
equation (30) should become V ′(2†2− |20|2)2† instead of zero. Putting2 = T n and using
the properties of T , one can show that the added term in the equation of motion vanishes. So,
the equation of motion is unchanged.

It is worth pointing out that these solutions are the eigenstates of J0 with the eigenvalue
(−2n). Similarly, one can also choose2 = T̄ n which will give another kind of solutions with
the eigenvalue (2n) for J0. Similar results were also obtained in [25] for the CP(N) model
on a fuzzy sphere.

6. The flux-like solution

In this section, we will discuss another kind of solution in gauge field theory with a scalar field
2. The Lagrangian takes the form

L = −1

g

∫
d)2

(
1

4
FabF

ab +Da2D
a2

)
(36)

where 2 takes the adjoint representation, i.e.

Da = Ja2 +
[
Aa

∗, 2
]
. (37)

The equation of motion reads

[Da, [D
a,Db]] + [2, [2,Db]] = 0

[Da, [D
a,2]] = 0. (38)

It is easy to check that equation (38) has a trivial solution 2 = constant and Aa = 0. Let us
consider another solution, 2 = T nT̄ n = 1 − PN,N−n. First, we need show it to be a solution.

Using the explicit expression, one can obtain

[Da,2] = T nJaT̄
nT nT̄ n − T nT̄ nT nJaT̄ n = 0 (39)

and the equation above equation (38) is also valid. The gauge field strength is given by

F+,− = [D+,D−] − 2D3 − ([J+, J−] − 2J3) = n(N + 1)PN
F3,± = 0.

(40)

7. The D-brane on a fuzzy sphere

Let us discuss the tachyon condensation on a non-BPSD-brane on a fuzzy sphere. As we did
in non-commutative R

n-space, we chose a background field B which is not constant in our
case. On any non-BPS D-brane there exists a tachyon field φ (do not confuse this with the
partial isometry operator in the above section) and a gauge field Aa . The effective action of a
non-BPS D2-brane can be written in the DBI form [26]. In our case it reads
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S =
√

2√
α′Gs

∫
dt Tr

[
V (φ)

√
det(G + 2πα′(F + B))

]
+ O(Daφ,DaF ) (41)

whereDaT ,DaF denote the covariant derivative of the tachyon and the gauge field strength on
a fuzzy sphere; the last term means inclusion of the higher derivatives of T and F . As argued
in many cases, the tachyon condensation does not depend on the detailed form of the last term.
This property is still valid in the fuzzy-sphere case. The tachyon potential factor appearing at
the beginning of the DBI form follows from Sen’s conjecture. It has a local maximum T = 0
and local minimum φ = φ0eiθ .

On the non-BPS D-brane, both tachyon and gauge fields take the adjoint representation
of the gauge group. On the basis of the correspondence between the Moyal product and the
operator product, the derivative could be considered as an operator on a fuzzy sphere. First,
we want to solve the equation of motion of the tachyon field. The general form is

DaD
aφ + · · · = ∂V (T )

∂T
. (42)

Here · · · stands for terms related to higher derivatives of T . The solutions of this equation
can be represented by the projection operator on a fuzzy sphere φ = φ0(1 − PN/2,n). The
projection on a fuzzy sphere consists of the partial isometry operator (88). Since 1 −PN/2,n is
also a projection, we have

∂V (T )

∂T

∣∣∣∣
T=T0(1−PN/2,n)

= ∂V (T0)

∂T0
(1 − PN/2,n) = 0.

On the other hand, one can check that such tachyon solutions satisfy a simple equation
D+φ = D+φ = 0. Thus this provides the whole equation of motion even if we do not
know the explicit form of the second term in equation (11). Next we examine the gauge field.
The equation of motion of the gauge field is DaFab = 0. This is automatically satisfied if the
strength is proportional to a projection. For our case, the detailed calculation shows the gauge
field strength to be F+,− = n(N − n)PN/2. The mass of this excitation is

M =
√

2√
α′Gs

Tr
[
V (φ0)(1 − PN/2,n)

√
det(G + 2πα′(F + B))

]
. (43)

The last task of this section is to investigate the tachyon condensation on brane–antibrane
systems. This is much more complicated than the non-BPSD-brane case, because the tachyon
becomes complex and now belongs to a bimodule. The actions of the operators from the left
and right of the bimodule are different [27–29].

The effective action of a D2 − D̄2 with two gauge fields has been computed through
boundary string field theory [29, 31]. It was applied to non-commutative tori in [30, 32]. For
our case the effective action takes the form

S = 1√
α′Gs

∫
dt Tr1

[
V (1)(φφ̄)

√
det(G + 2πα′(F (1) + B))

]
× 1√

α′Gs

∫
dt Tr2

[
V (2)(φ̄φ)

√
det(G + 2πα′(F (2) + B))

]
+ O(Daφ,DaF

+,DaF
−)

(44)

where O(x) denotes the derivative of the tachyon and the two gauge fields. The tachyon
potentials V (i) are assumed to be stationary at T0. From the action, the equations of motion are

Daφ = φ̄
∂V (1)(x)

∂(x)

∣∣∣∣
x=φφ̄
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Daφ̄ = φ
∂V (2)(x)

∂(x)

∣∣∣∣
x=φ̄φ

DaF
(i) = 0. (45)

We choose the following solutions:

φ = φ0T
n, φ̄ = φ0T̄

n. (46)

One can check that they give the stationary points of the tachyon potential. A detailed
calculation shows that these solutions satisfy the equation of motion of the tachyon. For
the gauge field, we choose

A(1)a = 0, A(2)a = T nĵaT̂
n − ĵa. (47)

The proof that the gauge field satisfies the equation of motion is straightforward. The gauge
field strength is F (2)+,− = n(N − n)PN/2.

8. Discussion

In this paper, we propose that the Hilbert space of the algebra A is a bimodule. The operators
acting on the bimodule are considered as differential operators in the fixed frame and in the
moving frame. On the basis of the two tangent vectors on a fuzzy sphere, we carried out the
ABS construction on the fuzzy sphere and applied it to the soliton and flux solutions of gauge
field theory. The application to D-brane systems and the mass spectrum are discussed.

In [25], the bosonic realizations of SU(2) algebra are used. Since La is not a suitable
derivative for exposing topologically non-trivial field configurations, Chan et al proposed
another SU(2) operator, Ka . The operator differential equation looks like equation (26)
(equation (2.24) in [25]). The BPS solution obtained in [25] must be equal to equation (35).
Since the BPS solitons are given in terms of partial isometry, it is not difficult to move away
from the origin by shifting the parameters in the symbols. These new solutions are similar to
theW±

k (equation (4.12) in [25]). Thus, the results in section 5 partially recover those in [25].
It would be desirable to extend the analysis to other fuzzy spheres such as S3 and S4. S3

can be considered as a coset of SO(4)/SO(3). Using a similar method, one may construct the
ABS operators and investigate the related non-commutative Yang–Mills theory.
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